Abstract

Protein-mediated trans-membrane and intracellular fatty acid trafficking are becoming increasingly recognised as biochemically and physiologically important concepts. Obesity and insulin resistance are polygenic disorders, heavily influenced by environmental and life-style factors, and are virtually always associated with disturbed fatty acid metabolism in adipose and other tissues. The aim of this study was to investigate mRNA expression levels of fatty-acid-handling proteins in adipose tissue in relation to markers of genetic and acquired obesity and insulin resistance. We quantified mRNA expression of subcutaneous adipose tissue fatty-acid-handling proteins (ALBP, KLBP, FATP1, FATP4, CD36, ACS1) in 17 monozygotic twin-pairs with a range of intra-pair differences (Delta) in BMI and detailed measures of obesity and insulin resistance, allowing influences of genetic and non-genetic factors to be distinguished. In acquired obesity FATP4 expression was up-regulated independently of genetic background (DeltaFATP4 versus DeltaBMI; r=0.50, p=0.04; DeltaFATP4 versus Deltabody fat; r=0.59, p=0.01). Similarly, CD36 and FATP1 expression correlated with acquired differences in HDL cholesterol and non-esterified fatty acid concentrations respectively. Moreover, FATP4 and CD36 expression levels correlated with measures of obesity and insulin resistance that are influenced by both genetic and non-genetic factors (FATP4 versus BMI: r=0.53, p=0.0001; FATP4 versus body fat: r=0.51, p=0.002; FATP4 versus homeostasis model assessment [HOMA]: r=0.49, p=0.001; CD36 versus BMI: r=0.50, p=0.02; CD36 versus body fat: r=0.63, p=0.001; CD36 versus HOMA: r=0.34, p=0.06). These findings indicate that expression of specific adipose tissue fatty-acid-handling proteins is related to obesity and insulin resistance, and that, in particular, FATP4 plays a role in acquired obesity. Our results suggest that facilitated fatty acid trafficking is a physiologically and pathologically relevant phenomenon in man.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call