Abstract

High levels of saturated, branched-chain fatty acids are deleterious to cells and animals, resulting in lipid accumulation and cytotoxicity. Although fatty acid binding proteins (FABPs) are thought to be protective, this hypothesis has not previously been examined. Phytanic acid (branched chain, 16-carbon backbone) induced lipid accumulation in L cell fibroblasts similar to that observed with palmitic acid (unbranched, C(16)): triacylglycerol >> free fatty acid > cholesterol > cholesteryl ester >> phospholipid. Although expression of sterol carrier protein (SCP)-2, SCP-x, or liver FABP (L-FABP) in transfected L cells reduced [(3)H]phytanic acid uptake (57-87%) and lipid accumulation (21-27%), nevertheless [(3)H]phytanic acid oxidation was inhibited (74-100%) and phytanic acid toxicity was enhanced in the order L-FABP >> SCP-x > SCP-2. These effects differed markedly from those of [(3)H]palmitic acid, whose uptake, oxidation, and induction of lipid accumulation were not reduced by L-FABP, SCP-2, or SCP-x expression. Furthermore, these proteins did not enhance the cytotoxicity of palmitic acid. In summary, intracellular FABPs reduce lipid accumulation induced by high levels of branched-chain but not straight-chain saturated fatty acids. These beneficial effects were offset by inhibition of branched-chain fatty acid oxidation that correlated with the enhanced toxicity of high levels of branched-chain fatty acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.