Abstract

The aim of this study was to examine whether the expression levels of mRNA of the three estrogen receptor (ER) subtypes, ERalpha, ERbeta, and truncated ER product-1 (TERP-1) found in the rat pituitary gland were modified during gestation, lactation, and postlactation periods. By using relative quantitative RT-PCR, we found that ERalpha mRNA significantly peaked in midpregnancy. However, the ERalpha protein level remained constant. ERbeta gene expression did not change throughout pregnancy, suggesting that it was not related to estradiol levels during this reproductive period. In contrast, both TERP-1 mRNA and protein levels dramatically increased throughout the second half of gestation, being faintly detectable in early pregnancy. TERP-1 expression was rapidly reversed by lactation, whereas neither pituitary ERalpha nor ERbeta relative levels were significantly altered. In addition, pup removal for 24-96 h on d 9 postpartum significantly reduced the expression of both ERalpha and ERbeta mRNA compared with that in lactating animals, but the expression of TERP-1 mRNA was no longer detected. Collectively, our data indicate that 1) TERP-1, ERalpha, and ERbeta expression levels are differentially regulated in the pituitary; 2) TERP-1 is variably expressed depending on the hormonal environment related to the estrous cycle, pregnancy, and lactation; and 3) TERP-1/ERalpha ratios dramatically change depending on reproductive periods, suggesting a critical role for TERP-1 in reproductive events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.