Abstract

Epithelial-mesenchymal transition (EMT) is a cellular process through which epithelial cells transform into mesenchymal cells. EMT-implicated genes initiate and promote cancer metastasis because mesenchymal cells have greater invasive and migration capacities than epithelial cells. In this pan-cancer analysis, we explored the relationship between gene expression changes and copy number variations (CNVs) for EMT-implicated genes. Based on curated 377 EMT-implicated genes from the literature, we identified 212 EMT-implicated genes associated with more frequent copy number gains (CNGs) than copy number losses (CNLs) using data from The Cancer Genome Atlas (TCGA). Then by correlating these CNV data with TCGA gene expression data, we identified 71 EMT-implicated genes with concordant CNGs and gene up-regulation in 20 or more tumor samples. Of those, 14 exhibited such concordance in over 110 tumor samples. These 14 genes were predominantly apoptosis regulators, which may implies that apoptosis is critical during EMT. Moreover, the 71 genes with concordant CNG and up-regulation were largely involved in cellular functions such as phosphorylation cascade signaling. This is the first observation of concordance between CNG and up-regulation of specific genes in hundreds of samples, which may indicate that somatic CNGs activate gene expression by increasing the gene dosage.

Highlights

  • Epithelial-mesenchymal transition (EMT) is the transformation of an epithelial cell into a mesenchymal cell, the latter of which is a critical cell type for the initiation of cancer metastasis [1,2,3]

  • Based on curated 377 EMT-implicated genes from the literature, we identified 212 EMT-implicated genes associated with more frequent copy number gains (CNGs) than copy number losses (CNLs) using data from The Cancer Genome Atlas (TCGA)

  • As EMT can promote cancer metastasis, we assumed that CNGs of EMT-implicated genes would be the driving force for gene expression changes related to EMT

Read more

Summary

Introduction

Epithelial-mesenchymal transition (EMT) is the transformation of an epithelial cell into a mesenchymal cell, the latter of which is a critical cell type for the initiation of cancer metastasis [1,2,3]. During this morphological and cellular change, cells acquire different cellular functions. While epithelial cells have the tight intercellular connections due to their cellular junctions, mesenchymal cells have only loose connections at focal points. Epithelial cells that transform into mesenchymal cells through EMT lose their cellular polarity. Understanding EMT may facilitate the development of diagnostic biomarkers for cancer diagnosis

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.