Abstract

In the amphibian Xenopus laevis, the elongation factor 1 alpha proteins (EF-1 alpha) synthesised in oocytes and somatic cells correspond to distinct gene products. Furthermore, the somatic EF-1 alpha gene (EF-1 alpha S) produces one of the most highly expressed early zygotic transcripts in the embryo. The functional recycling of EF-1 alpha (conversion of EF-1 alpha-GDP to EF-1 alpha-GTP) is assured by the EF-1 beta gamma complex. We show here that in Xenopus laevis embryos, contrary to the situation for EF-1 alpha, EF-1 beta, and EF-1 gamma mRNAs are transcribed from the same genes in oocytes and somatic cells. In addition, the onset of transcription of the EF-1 beta and EF-1 gamma genes from the zygotic genome occurs several hours after that of the somatic EF-1 alpha S gene. Therefore, during early Xenopus development the expression of these three elongation factors is not co-ordinated at the transcriptional level. The consequences of this uncoupling on the efficiency of translational elongation in the early Xenopus embryo are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call