Abstract

We examined the expression and hormonal regulation of E-cadherin (CDH1) and N-cadherin (CDH2) with respect to primordial follicle formation. Hamster Cdh1 and Cdh2 cDNA and amino acid sequences were more than 90% similar to those of the mouse, rat, and human. Although CDH1 expression remained exclusively in the oocytes during neonatal ovary development, CDH2 expression shifted from the oocytes to granulosa cells of primordial follicles on postnatal day (P)8. Subsequently, strong CDH2 expression was restricted to granulosa cells of growing follicles. Cdh2 mRNA levels in the ovary decreased from embryonic d 13 through P10 with a transient increase on P7, which was the day before the appearance of primordial follicles. Cdh1 mRNA levels decreased from embryonic d 13 through P3 and then showed a transient increase on P8, coinciding with the formation of primordial follicles. CDH1 and CDH2 expression were consistent with that of mRNA. Neutralization of FSH in utero impaired primordial follicle formation with an associated decrease in Cdh2 mRNA and CDH2, but an increase in Cdh1 mRNA and CDH1 expression. The altered expression was reversed by equine chorionic gonadotropin treatment on P1. Whereas a CDH2 antibody significantly reduced the formation of primordial and primary follicles in vitro, a CDH1 antibody had the opposite effect. This is the first evidence to suggest that primordial follicle formation requires a differential spatiotemporal expression and action of CDH1 and CDH2. Further, FSH regulation of primordial follicle formation may involve the action of CDH1 and CDH2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.