Abstract
Mitochondrial DNA integrity is ensured by several nuclear-encoded proteins in vertebrates, and a number of mtDNA alterations in human diseases, including deletions and duplications, have been suspected to result from errors in the mitochondrial recombination pathway. However, the presence of the latter system is still a matter of controversy as RecA proteins display various functions in vitro. In Escherichia coli, RecA plays a central role in homologous recombination by pairing and transferring a single strand to a homologous duplex DNA. To address indirectly the issue of a mitochondrial recombination pathway in vivo, we have constructed a chimeric gene containing an N terminal mitochondrial targeting sequence and the E. coli RecA gene. Cells were transfected by the recombinant plasmid, then tested for their mtDNA repair upon bleomycin treatment. We found an increased repair rate of the mitochondrial DNA in cells expressing RecA as compared to control cells. These results indicate that the transfected cells display an improved mtDNA repair replication pathway due to the exogeneous RecA, likely in synergy with an endogeneous rate-limiting mitochondrial recombination pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.