Abstract

PC-12 cells depolarize during hypoxia and release dopamine. The hypoxia-induced depolarization is due to inhibition of an O2-sensitive K+ current. The role of dopamine released during hypoxia is uncertain, but it could act as an autocrine to modulate membrane conductance during hypoxia. The current study was undertaken to investigate this possibility. Reverse transcription-polymerase chain reaction and sequence analysis revealed that the D2 isoform of the dopamine receptor is expressed in rat PC-12 cells. Exogenously applied dopamine and the D2 agonist quinpirole elicited inhibition of a voltage-dependent K+ current (I(K)) that was prevented by sulpiride, a D2 receptor antagonist. Dopamine and quinpirole applied during hypoxia potentiated the inhibitory effect of hypoxia on I(K). We also found that quinpirole caused reversible inhibition of a voltage-dependent Ca2+ current (I(Ca)) and attenuation of the increase in intracellular free Ca2+ during hypoxia. Our results indicate that dopamine released from PC-12 cells during hypoxia acts via a D2 receptor to "autoregulate" I(K) and I(Ca).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.