Abstract
Dedicators of cytokinesis 9 and 11 (DOCK9 and DOCK11) are members of the dedicator of cytokinesis protein family encoding the guanosine nucleotide exchange factors for Rho GTPases. Together with DOCK10, they constitute the DOCK-D or Zizimin subfamily. Two alternative full-length amino terminal isoforms of DOCK9 are known, which we will call DOCK9.1 and DOCK9.2. In order to investigate the relevance of the presence of the alternative first exon isoforms within this family, and to lay the groundwork for future studies that seek to investigate their potential role as biomarkers of disease, the expression levels of DOCK9 and DOCK11 were measured by qRT-PCR in 26 human tissues and 23 human cell lines, and by Western blot analysis, using commercial antibodies in cell lines. DOCK9.1 and DOCK9.2 were widely distributed. High levels of expression of both isoforms were found in the lungs, placenta, uterus, and thyroid gland. However, only DOCK9.1 was significantly expressed in the neural and hematopoietic tissues. The unique first exon form of DOCK11 was highly expressed in hematopoietic tissues, such as the peripheral blood leukocytes, spleen, thymus, or bone marrow, and in others such as the lungs, placenta, uterus, or thyroid gland. In contrast to tissues, the expression of DOCK9.1 and DOCK9.2 differed from one another and also from total DOCK9 in cell lines, suggesting that the amino terminal isoforms of DOCK9 may be differentially regulated. This study demonstrates the usefulness of antibodies in investigating the regulation of the expression of DOCK9.1, total DOCK9, and DOCK11.
Highlights
Dedicator of cytokinesis (DOCK) is the designation for a family of 11 genes that encode the large guanosine nucleotide exchange factors (GEF) for Rho GTPases
This study demonstrates the usefulness of antibodies in investigating the regulation of the expression of DOCK9.1, total DOCK9, and DOCK11
DOCK10 and its mutually exclusive first exon isoforms were studied in human tissues and cell lines
Summary
Dedicator of cytokinesis (DOCK) is the designation for a family of 11 genes that encode the large guanosine nucleotide exchange factors (GEF) for Rho GTPases. DOCK proteins are characterized by a GEF domain called CZH2 [1,2,3] They play roles in cell shape and movement by regulating actin cytoskeleton dynamics. DOCK9 has two alternative full-length amino terminal isoforms, designated here as DOCK9.1 and DOCK9.2 by analogy with DOCK10 (NCBI RefSeq database numbers NM_015296 and NM_001130048, respectively) [10,11,12,13]. The expression of the DOCK9 isoforms has not been studied far In accordance with their function in cell plasticity, DOCK9 and DOCK11 could play roles in cancer and other pathologies. The data suggested that there are no alternative first exon isoforms of DOCK11 These findings may be useful for future studies aimed at establishing the potential roles of DOCK9 and DOCK11 as biomarkers of disease
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.