Abstract

Congenital diaphragmatic hernia (CDH) and associated pulmonary hypoplasia (PH) are thought to be caused by a malformation of the diaphragmatic and pulmonary mesenchyme. Dispatched RND transporter family member 1 (Disp-1) encodes a transmembrane protein that regulates the release of cholesterol and palmitoyl, which is critical for normal diaphragmatic and airway development. Disp-1 is strongly expressed in mesenchymal compartments of fetal diaphragms and lungs. Recently, Disp-1 mutations have been identified in patients with CDH. We hypothesized that diaphragmatic and pulmonary Disp-1 expression is decreased in the nitrofen-induced CDH model. Time-mated rats received nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms and lungs were microdissected on selected endpoints D13, D15 and D18; and divided into control and nitrofen-exposed specimens (n = 12 per sample, time-point and experimental group). Diaphragmatic and pulmonary Disp-1 expression was evaluated by qRT-PCR. Immunofluorescence double staining for Disp-1 was combined with diaphragmatic and pulmonary mesenchymal markers Wt-1 and Sox-9 to localize protein expression in fetal diaphragms and lungs. Relative mRNA levels of Disp-1 were significantly decreased in pleuroperitoneal folds/primordial lungs on D13 (0.18 ± 0.08 vs. 0.46 ± 0.41; p < 0.05/1.06 ± 0.27 vs. 1.34 ± 0.79; p < 0.05), developing diaphragms/lungs on D15 (0.18 ± 0.06 vs. 0.44 ± 0.23; p < 0.05/0.73 ± 0.36 vs. 1.16 ± 0.27; p < 0.05) and fully muscularized diaphragms/differentiated lungs on D18 (0.22 ± 0.18 vs. 0.32 ± 0.23; p < 0.05/0.56 ± 0.16 vs. 0.77 ± 0.14; p < 0.05) of nitrofen-exposed fetuses compared to controls. Confocal laser scanning microscopy demonstrated markedly diminished Disp-1 immunofluorescence predominately in the diaphragmatic and pulmonary mesenchyme of nitrofen-exposed fetuses on D13, D15 and D18, associated with a clear reduction of proliferating mesenchymal cells. Decreased Disp-1 expression during diaphragmatic development and lung branching morphogenesis may interrupt mesenchymal cell proliferation, thus leading to diaphragmatic defects and PH in the nitrofen-induced CDH model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call