Abstract

Previous work has demonstrated that radiation exposure modulates the expression of a series of genes, including those that encode cytoskeletal elements. The experiments reported here were designed to examine (1) the comparative effects of neutrons administered at high versus low dose-rates, (2) the comparative effects of neutrons on cycling versus resting cells and (3) the comparative effects of neutrons versus gamma-rays on beta- and gamma-actin mRNA accumulation in Syrian hamster embryo (SHE) cells 1 and 3 h post-irradiation. JANUS fission-spectrum neutrons from Argonne National Laboratory's JANUS reactor administered at high (12 cGy/min) dose-rates had little effect on resting cells, but at very low dose-rates (0.1 cGy/min) had a repressive effect on gamma-actin mRNA accumulation. Increased accumulation of beta-actin mRNA was detected following the exposure of cells to neutrons administered at high dose-rates, but repression of beta-actin mRNA was observed when neutrons were administered at low dose-rates. Cycling cells (unexposed and neutron irradiated) in all cases expressed higher levels of all actin-specific mRNAs than resting cells; beta-actin mRNA (but not gamma-actin mRNA) was induced to a greater extent in cycling cells than in resting cells during the first hour following neutron exposure. In resting cells, however, low dose-rate neutrons were more effective than low dose-rate gamma-rays at repressing both gamma- and beta-actin mRNA accumulation. These results demonstrate the differential effects of radiation quality (neutrons versus gamma-rays) and cell-cycle state on the modulation of actin isotype-specific gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.