Abstract

Literature reveals that interaction with live Staphylococcus aureus (S.aureus) or heat killed S.aureus (HKSA) promotes secretion of CXCL-8 or interleukin-8 (IL-8) from leukocytes, however, the expressions of CXCR1 in murine splenic (SPM), peritoneal macrophages (PM) and resident fresh bone marrow cells (FBMC) have not been identified. Currently, very few studies are available on the functional characterization of CXCR1 in mouse macrophage subtypes and its modulation in relation to acute S.aureus infection. SPM, PM and FBMCs were infected with viable S.aureus or stimulated with HKSA in presence and absence of anti-CXCR1 antibody in this study. We reported here that CXCR1 was not constitutively expressed by macrophage subtypes and the receptor was induced only after S.aureus stimulation. The CXCR1 band was found specific as we compared with human polymorphonuclear neutrophils (PMNs) as a positive control (data not shown). Although, we did not show that secreted IL-8 from S.aureus-infected macrophages promotes migration of PMNs. Blocking of cell surface CXCR1 decreases the macrophage's ability to clear staphylococcal infection, attenuates proinflammatory cytokine production and the increased catalase and decreased superoxide dismutase (SOD) enzymes of the bacteria might indicate their role in scavenging macrophage derived hydrogen peroxide (H2O2). The decreased levels of cytokines due to CXCR1 blockade before S.aureus infection appear to regulate the killing of bacteria by destroying H2O2 and nitric oxide (NO). Moreover, functional importance of macrophage subpopulation heterogeneity might be important in designing new effective approaches to limit S.aureus infection induced inflammation and cytotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call