Abstract

Panicum meyerianum Nees is a wild relative of Panicum maximum Jacq. (guinea grass), which is an important warm-season forage grass and biomass crop. We investigated the conditions that maximized the transformation efficiency of P. meyerianum by Agrobacterium infection by monitoring the expression of the β-glucuronidase (GUS) gene. The highest activities of GUS in calli were achieved by the co-cultivation of plants with Agrobacterium at 28°C for 6 days. We transferred the ddsA gene, which encodes decaprenyl diphosphate synthase and is required for coenzyme Q10 (CoQ10) synthesis, into P. meyerianum by using our optimized co-cultivation procedure for transformation. We confirmed by PCR and DNA gel blot hybridization that all hygromycin-resistant plants retained stable insertion of the hpt and ddsA genes. We also demonstrated strong expression of S14:DdsA protein in the leaves of transgenic P. meyerianum. Furthermore, we showed that transgenic P. meyerianum produced CoQ10 at levels 11–20 times higher than that of non-transformants. By comparison, the CoQ9 level in transgenic plants was dramatically reduced. This is the first report of efficient Agrobacterium-mediated transfer of a foreign gene into the warm-season grass P. meyerianum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.