Abstract
Drug-evoked synaptic plasticity in the mesolimbic dopamine (DA) system reorganizes neural circuits that may lead to addictive behavior. The first cocaine exposure potentiates AMPAR excitatory postsynaptic currents (EPSCs) onto DA neurons of the VTA but reduces the amplitude of NMDAR-EPSCs. While plasticity of AMPAR transmission is expressed by insertion of calcium (Ca(2+))-permeable GluA2-lacking receptors, little is known about the expression mechanism for altered NMDAR transmission. Combining ex vivo patch-clamp recordings, mouse genetics, and subcellular Ca(2+) imaging, we observe that cocaine drives the insertion of NMDARs that are quasi-Ca(2+)-impermeable and contain GluN3A and GluN2B subunits. These GluN3A-containing NMDARs appear necessary for the expression of cocaine-evoked plasticity of AMPARs. We identify an mGluR1-dependent mechanism to remove these noncanonical NMDARs that requires Homer/Shank interaction and protein synthesis. Our data provide insight into the early cocaine-driven reorganization of glutamatergic transmission onto DA neurons and offer GluN3A-containing NMDARs as new targets in drug addiction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.