Abstract

We aimed to evaluate some specific conditions for growth of Pediococcus pentosaceus ST65ACC and its bacteriocin expression through ABC transporters; to purify the bacteriocin and determine its sequence; and to evaluate the cytotoxicity potential of the purified bacteriocin(s). The results presented for growth behaviour of P. pentosaceus ST65ACC showed that the bacterial growth was slightly influenced when cultured in MRS broth with different amounts of inoculum: 1, 2, 5 and 10%. The bacteriocin activity increased when 5 and 10% inocula were used. The carbon source (glucose) used in different amounts (1, 2, 3 or 4%) had no significant effect on growth and bacteriocin production. The studied strain P. pentosaceus ST65ACC was able to metabolize xylooligosaccharide (XOS) as the sole carbon source, resulting in the production of an antimicrobial peptide. The genes involved in the ABC transport system and sugar metabolism of P. pentosaceus ST65ACC were expressed at different levels. The bacteriocin produced by P. pentosaceus ST65ACC was partially purified by precipitation with ammonium sulphate (40% saturation), followed by reversed-phase liquid chromatography, resulting in the identification of an active bacteriocin. Tandem mass spectrometry was used to identify the partial sequence KYYGNGVTCGKHSCSVDWGK sharing high similarity to coagulin A. The semi-purified bacteriocin had low cytotoxicity based on estimated values for maximal nontoxic concentration (MNC) and cytotoxicity concentration (CC50 ). The bacteriocin produced by P. pentosaceus ST65ACC is similar to coagulin, with low cytotoxicity, strong antimicrobial activity and possible additional metabolite routes in the producer cell. In addition to MRS broth, bacteriocin was produced also in medium containing XOS (as the single carbon source). To the best of our knowledge, this is the first report of evaluation of the role of ABC transporters in the expression of bacteriocin by P. pentosaceus, cultured in MRS and XOS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.