Abstract

Excitatory interneurons account for the majority of dorsal horn neurons, and are required for perception of normal and pathological pain. We have identified largely non‐overlapping populations in laminae I‐III, based on expression of substance P, gastrin‐releasing peptide, neurokinin B, and neurotensin. Cholecystokinin (CCK) is expressed by many dorsal horn neurons, particularly in the deeper laminae. Here, we have used immunocytochemistry and in situ hybridization to characterize the CCK cells. We show that they account for ~7% of excitatory neurons in laminae I‐II, but between a third and a quarter of those in lamina III. They are largely separate from the neurokinin B, neurotensin, and gastrin‐releasing peptide populations, but show limited overlap with the substance P cells. Laminae II‐III neurons with protein kinase Cγ (PKCγ) have been implicated in mechanical allodynia following nerve injury, and we found that around 50% of CCK cells were PKCγ‐immunoreactive. Neurotensin is also expressed by PKCγ cells, and among neurons with moderate to high levels of PKCγ, ~85% expressed CCK or neurotensin. A recent transcriptomic study identified mRNA for thyrotropin‐releasing hormone in a specific subpopulation of CCK neurons, and we show that these account for half of the CCK/PKCγ cells. These findings indicate that the CCK cells are distinct from other excitatory interneuron populations that we have defined. They also show that PKCγ cells can be assigned to different classes based on neuropeptide expression, and it will be important to determine the differential contribution of these classes to neuropathic allodynia.

Highlights

  • The spinal dorsal horn contains numerous interneurons, which are involved in processing somatosensory information (Abraira & Ginty, 2013; Braz, Solorzano, Wang, & Basbaum, 2014; Peirs & Seal, 2016; Todd, 2010)

  • While the neurotensin and neurokinin B (NKB) cells can be identified by immunocytochemistry, we revealed the substance P cells by spinal injection of adeno-associated viruses (AAVs) coding for Cre-dependent expression cassettes into mice in which Cre recombinase was knocked into Tac1

  • Our preliminary studies indicated that some pro-CCK-positive neurons in laminae II-III showed strong protein kinase Cγ (PKCγ)-immunoreactivity, and we compared expression of neurotensin, CCK, and PKCγ, because neurotensin is expressed by cells with high levels of PKCγ in this region (Gutierrez-Mecinas et al, 2016)

Read more

Summary

| INTRODUCTION

The spinal dorsal horn contains numerous interneurons, which are involved in processing somatosensory information (Abraira & Ginty, 2013; Braz, Solorzano, Wang, & Basbaum, 2014; Peirs & Seal, 2016; Todd, 2010). A recent transcriptomic study by Häring et al (2018) identified 15 classes of excitatory dorsal horn neuron, and their results are broadly consistent with the findings described above, as their classes include cells with high levels of the mRNAs for neurotensin, NKB, and substance P. Another peptide that featured in their classification scheme was cholecystokinin (CCK), which was expressed in three separate populations of excitatory neurons. Because Häring et al (2018) reported that one of the CCK populations could be identified based on expression of thyrotropin-releasing hormone (TRH), we looked for cells that contained mRNAs for both CCK and TRH and tested whether these corresponded to PKCγ-expressing neurons

| MATERIALS AND METHODS
| RESULTS
Findings
| DISCUSSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.