Abstract
Cryptochrome 1 (cry1), the core regulator of the circadian clock, is essential for ontogeny and mammalian reproduction. Unlike in other tissues, the cry1 gene have noncircadian functions in spermatogenesis, which implies the unique role of cry1 gene in the development of testis. The role of cry1 during the puberty has not been described yet. This study aimed to explore the relationship between cry1 expression and spermatogenic cell numbers. We analyzed testicular tissues from Hu sheep aged 0-180days by hematoxylin and eosin staining, measured cry1 and cell proliferation regulatory factors (bricd5, tnfrsf21, cdk1) expression by quantitative real-time PCR and characterized the transcription factor in the 5' flanking region of cry1 gene. The data revealed that the number of spermatocytes and early spermatocytes increased rapidly from 90 to 120 dpp (day postpartum). Correspondingly, there was a marked variation in the cry1 and cell proliferation related genes (bricd5, tnfrsf21, cdk1) mRNA expression in the testes from the age of 90days to 180days (p < 0.05). We also identified some transcription factors (tcfl5) related to cell proliferation. There is a significant causal relationship between the transcription level of cry1 gene in Hu sheep testes and the number of spermatogenic cells. It is speculated that cry1 gene may regulate the proliferation of spermatogenic cells by regulating the expression of cell proliferation related genes such as bricd5, tnfrsf21 and cdk1.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.