Abstract

Cryptochrome 1 (cry1), the core regulator of the circadian clock, is essential for ontogeny and mammalian reproduction. Unlike in other tissues, the cry1 gene have noncircadian functions in spermatogenesis, which implies the unique role of cry1 gene in the development of testis. The role of cry1 during the puberty has not been described yet. This study aimed to explore the relationship between cry1 expression and spermatogenic cell numbers. We analyzed testicular tissues from Hu sheep aged 0-180days by hematoxylin and eosin staining, measured cry1 and cell proliferation regulatory factors (bricd5, tnfrsf21, cdk1) expression by quantitative real-time PCR and characterized the transcription factor in the 5' flanking region of cry1 gene. The data revealed that the number of spermatocytes and early spermatocytes increased rapidly from 90 to 120 dpp (day postpartum). Correspondingly, there was a marked variation in the cry1 and cell proliferation related genes (bricd5, tnfrsf21, cdk1) mRNA expression in the testes from the age of 90days to 180days (p < 0.05). We also identified some transcription factors (tcfl5) related to cell proliferation. There is a significant causal relationship between the transcription level of cry1 gene in Hu sheep testes and the number of spermatogenic cells. It is speculated that cry1 gene may regulate the proliferation of spermatogenic cells by regulating the expression of cell proliferation related genes such as bricd5, tnfrsf21 and cdk1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call