Abstract

Odontoblasts, which consist the outermost compartment of the dental pulp, are primarily engaged in dentin formation. Earlier evidence suggests that voltage-gated calcium channels, such as the high voltage-activated L-type calcium channels, serve as a calcium entry route to mediate dentin formation in odontoblasts. However, the involvement of other voltage-gated calcium channels in regulating intracellular Ca2+ remain unanswered. The expression of voltage-gated calcium channel subtypes of the P/Q- (CaV2.1), N-(CaV2.2), R- (CaV2.3), and T- (CaV3.1-3.3) type were screened in adult rat odontoblasts by single cell RT-PCR. Among these candidates, immunopositivity against CaV3.1 was examined in the odontoblastic layer in teeth sections and dissociated odontoblasts. To confirm the functional expression of CaV3.1 in odontoblasts, intracellular Ca2+ increase in response to membrane depolarization was monitored with Fura-2-based ratiometric calcium imaging. Among the candidate calcium channels, we found that mRNA for CaV3.1 is mainly detected in odontoblasts, with its expression being detected in the odontoblastic layer and dissociated odontoblasts. High extracellular K+-induced membrane depolarization was inhibited by pharmacological blockers for T-type calcium channels such as amiloride or ML218. Our results demonstrate that among P/Q-, N-, R-, and T-type calcium channels, CaV3.1 is mainly expressed in odontoblasts to mediate intracellular Ca2+ signaling in response to membrane depolarization. These findings suggest that CaV3.1 may facilitate intracellular Ca2+ dynamics especially in the range of subliminal depolarizations near resting membrane potentials where other high voltage-gated calcium channels such as the L-type are likely to be inactive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call