Abstract

The authors have previously shown that an embryonic stem cell-like population within keloid-associated lymphoid tissues in keloid lesions expresses components of the renin-angiotensin system that may be dysregulated. The authors hypothesized that cathepsins B, D, and G are present within the embryonic stem cell-like population in keloid lesions and contribute to bypass loops of the renin-angiotensin system. 3,3'-Diaminobenzidine immunohistochemical staining for cathepsins B, D, and G was performed on formalin-fixed paraffin-embedded sections in keloid tissue samples of 11 patients. Immunofluorescence immunohistochemical staining was performed on three of these keloid tissue samples, by co-staining with CD34, tryptase, and OCT4. Western blotting, reverse transcription quantitative polymerase chain reaction, and enzyme activity assays were performed on five keloid tissue samples and four keloid-derived primary cell lines to investigate protein and mRNA expression, and functional activity, respectively. 3,3'-Diaminobenzidine immunohistochemical staining demonstrated expression of cathepsins B, D, and G in all 15 keloid tissue samples. Immunofluorescence immunohistochemical staining showed localization of cathepsins B and D to the endothelium of microvessels within the keloid-associated lymphoid tissues and localization of cathepsin G to the tryptase-positive perivascular cells. Western blotting confirmed semiquantitative levels of cathepsins B and D in keloid tissue samples and keloid-derived primary cell lines. Reverse transcription quantitative polymerase chain reaction showed quantitative transcriptional activation of cathepsins B and D in keloid tissue samples and keloid-derived primary cell lines and cathepsin G in keloid tissue samples. Enzyme activity assays demonstrated functional activity of cathepsins B and D. Cathepsins B, D, and G are expressed by the embryonic stem cell-like population within the keloid-associated lymphoid tissues of keloid lesions and may act to bypass the renin-angiotensin system, suggesting a potential therapeutic target using renin-angiotensin system modulators and cathepsin inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.