Abstract
Calmodulin (CaM)-dependent enzymes, such as CaM-dependent phosphodiesterase (CaM-PDE), CaM-dependent protein phosphatase (CN), and CaM-dependent protein kinase II (CaM kinase II), are found in high concentrations in differentiated mammalian neurons. In order to determine whether neuroblastoma cells express these CaM-dependent enzymes as a consequence of cellular differentiation, a series of experiments was performed on human SMS-KCNR neuroblastoma cells; these cells morphologically differentiate in response to retinoic acid and phorbol esters [12-O-tetradecanoylphorbol 13-acetate (TPA)]. Using biotinylated CaM overlay procedures, immunoblotting, and protein phosphorylation assays, we found that SMS-KCNR cells expressed CN and CaM-PDE, but did not appear to have other neuronal CaM-binding proteins. Exposure to retinoic acid, TPA, or conditioned media from human HTB-14 glioma cells did not markedly alter the expression of CaM-binding proteins; 21-day treatment with retinoic acid, however, did induce expression of novel CaM-binding proteins of 74 and 76 kilodaltons. Using affinity-purified polyclonal antibodies, CaM-PDE immunoreactivity was detected as a 75-kilodalton peptide in undifferentiated cells, but as a 61-kilodalton peptide in differentiated cells. CaM kinase II activity and subunit autophosphorylation was not evident in either undifferentiated or neurite-bearing cells; however, CaM-dependent phosphatase activity was seen. Immunoblot analysis with affinity-purified antibodies against CN indicated that this enzyme was present in SMS-KCNR cells regardless of their state of differentiation. Although SMS-KCNR cells did not show a complete pattern of neuronal CaM-binding proteins, particularly because CaM kinase II activity was lacking, they may be useful models for examination of CaM-PDE and CN expression. It is possible that CaM-dependent enzymes can be used as sensitive markers for terminal neuronal differentiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.