Abstract
To understand whether bone morphogenetic protein plays any role in the formation of primordial follicles in the hamster, we examined the temporal and spatial expression of bone morphogenetic protein receptor (BMPR) mRNA and protein in embryonic (E) 13 through postnatal day (P) 15 ovarian cells and a possible regulation by FSH during the formation of primordial follicles on P8. BMPRIA and BMPRII mRNA levels were significantly higher than that of BMPR1B throughout ovary development. BMPRIA and BMPRII mRNA levels increased significantly on E14 and declined by P5 through P6. Whereas BMPRII mRNA increased again by P7, BMPRIA mRNA levels increased through P8 concurrent with primordial follicle formation. In contrast, BMPRIB mRNA levels increased greater than 10-fold on P7-9, with a further 3-fold increase by P10. BMPR proteins were low in the somatic cells and oocytes on E13 but increased progressively during postnatal development. BMPR expression in somatic cells increased markedly on P8. Whereas BMPRII expression declined by P10 and remained steady thereafter, BMPRIA protein expression fluctuated until P15 when it became low and steady. Overall, BMPRIB immunoreactivity also declined by P10 and then remained low in the interstitial cells through P15. FSH antiserum treatment on E12 significantly attenuated receptor mRNA and protein levels by P8, but equine chorionic gonadotropin replacement on P1 reversed the inhibition. Furthermore, FSH in vitro up-regulated BMPR levels in P4 ovaries. This unique pattern of BMPR expression in the oocytes and somatic cells during perinatal ovary development suggests that BMP may play a regulatory role in primordial follicle formation. Furthermore, FSH may regulate BMP action by modulating the expression of its receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.