Abstract

The temporal expression of bone microsomal casein kinase II, osteopontin, bone sialoprotein, alkaline phosphatase, and the accumulation of a solid calcium–inorganic orthophosphate mineral phase, have been charted from day 2 to day 21 during the repair of calvarial defects in rats induced by the implantation of decalcified rat bone matrix. Unlike the sequence of events that occur when the same decalcified bone matrix is implanted subcutaneously or intramuscularly, in which cases the first tissue to form in response to the implant is cartilage that subsequently calcifies and is later resorbed and replaced by bone, the repair of cranial defects is quite different. In the latter case, the first cells induced are undifferentiated mesenchymal cells and early fibroblasts followed by osteoblastic direct bone formation. Somewhat later a few small islands of cartilage are formed, widely separated and spatially distinct from the newly formed bone matrix. All of the cartilage and most of the implanted decalcified bone matrix are later resorbed and replaced by new bone by day 21. This in vivo model of the repair of a bone defect by direct bone formation has provided an excellent system to follow specific biochemical and physicochemical events. The total accumulation and rate of accumulation of the mineral and the two noncollagenous phosphoproteins (bone sialoprotein and osteopontin), as well as the activities of alkaline phosphatase, and for the first time either in vivo or in cell culture, the activity of microsomal casein kinase II, the major enzyme that phosphorylates the bone phosphoproteins, have been determined as a function of healing time in vivo. The overall general pattern of accumulation of the phosphoproteins and calcium-phosphate mineral phase and their relationships are similar to those reported in osteoblast cell cultures also monitored as a function of time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.