Abstract
The conidium plays a critical role in the life cycle of many filamentous fungi, being the primary means for survival under unfavorable conditions. To investigate the transcriptional changes taking place during the transition from growing hyphae to conidia in Trichoderma reesei, microarray experiments were performed. A total of 900 distinct genes were classified as differentially expressed, relative to their expression at time zero of conidiation, at least at one of the time points analyzed. The main functional categories (FunCat) overrepresented among the upregulated genes were those involving solute transport, metabolism, transcriptional regulation, secondary metabolite synthesis, lipases, proteases, and, particularly, cellulases and hemicellulases. Categories overrepresented among the downregulated genes were especially those associated with ribosomal and mitochondrial functions. The upregulation of cellulase and hemicellulase genes was dependent on the function of the positive transcriptional regulator XYR1, but XYR1 exerted no influence on conidiation itself. At least 20% of the significantly regulated genes were nonrandomly distributed within the T. reesei genome, suggesting an epigenetic component in the regulation of conidiation. The significant upregulation of cellulases and hemicellulases during this process, and thus cellulase and hemicellulase content in the spores of T. reesei, contributes to the hypothesis that the ability to hydrolyze plant biomass is a major trait of this fungus enabling it to break dormancy and reinitiate vegetative growth after a period of facing unfavorable conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.