Abstract

Low and high molecular weight isoforms of the mitogen and multifunctional cytokine basic fibroblast growth factor (FGF-2) are up-regulated in neurons and glial cells in response to peripheral nerve lesion. While synthesis, regulation and functions of FGF-2 in non-neuronal cells are well established, the significance of neuronal FGF-2 remains to be investigated in the peripheral nervous system. Therefore, the expression, intracellular localization and possible effects of FGF-2 isoforms were analyzed in primary sympathetic neurons derived from the rat superior cervical ganglion. FGF-2 is detected in the nucleus and in perinuclear Golgi fields of early postnatal neurons which also express mRNA and protein for the FGF receptor type 1. Biolistic transfection of plasmids encoding FGF-2 isoforms fused to fluorescent proteins demonstrates nuclear targeting of 18 kDa FGF-2 and 23 kDa FGF-2 with prominent accumulation in the nucleolus of neurons. Neither overexpression nor treatment with FGF-2 isoforms promotes survival of sympathetic neurons deprived of nerve growth factor; however, neuronal transfection of the high molecular weight FGF-2 isoform in dissociated and slice cultures results in a bi- or multinuclear phenotype. The present study provides evidence for neuronal synthesis and targeting of FGF-2 to the nucleus and Golgi apparatus supporting a dual role of FGF-2 in the nucleus and secretory pathway of sympathetic neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.