Abstract

Chitosan obtained by enzymatic deacetylation of chitin using chitin deacetylase (CDA) holds promise primarily due to the possibility to yield chitosan with non-random patterns of acetylation and more environmentally friendly process compared to chemical deacetylation. In the present study, a sustainable bioprocess is reported for over-expression of a bacterial CDA in E. coli pLysS cells. A Bacillus licheniformis CDA gene is identified in the genome of the bacterium, cloned, and expressed, yielding enzymatically active recombinant protein. For enzyme production, a growth medium is formulated using carbon and nitrogen sources, which do not compete with the human food chain. The maximum enzyme activity of 320 ± 20 U/mL is achieved under optimized conditions. The CDA productivity is improved by about 23 times in shake flask culture by optimizing operating conditions and medium components. The CDA is purified and the enzyme kinetic values i.e. Km, Vmax and Kcat are reported. Also the effect of cofactors, temperature, and pH on the enzyme activity is reported. Further, economic yield is proposed for production of CDA through this bioprocess.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call