Abstract

ATP7B is a copper transporting P-type ATPase, also known as Wilson disease protein, which plays a key role in copper distribution inside cells. Recent experimental data in cell culture have shown that ATP7B putatively serves a dual function in hepatocytes: when localized to the Golgi apparatus, it has a biosynthetic role, delivering copper atoms to apoceruloplasmin; when the hepatocytes are under copper stress, ATP7B translocates to the biliary pole to transport excess copper out of the cell and into the bile canaliculus for subsequent excretion from the body via the bile. The above data on ATP7B localization have been mainly obtained in tumor cell systems in vitro. The aim of the present work was to assess the presence and localization of the Wilson disease protein in the human liver. We tested immunoreactivity for ATP7B in 10 human liver biopsies, in which no significant pathological lesion was found using a polyclonal antiserum specific for ATP7B. In the normal liver, immunoreactivity for ATP7B was observed in hepatocytes and in biliary cells. In the hepatocytes, immunoreactivity for ATP7B was observed close to the plasma membrane, both at the sinusoidal and at the biliary pole. In the biliary cells, ATP7B was localized close to the cell membrane, mainly concentrated at the basal pole of the cells. The data suggest that, in human liver, ATP7B is localized to the plasma membrane of both hepatocytes and biliary epithelial cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.