Abstract

Larvae of the Antarctic midge Belgica antarctica Jacobs (Diptera: Chironomidae) are highly tolerant of diverse environmental stresses, including freezing, severe desiccation, and osmotic extremes. Furthermore, dehydration confers subsequent desiccation and freeze tolerance. While a role for aquaporins—channels for water and other solutes—has been proposed in these dehydration processes, the types of aquaporins involved in dehydration-driven stress tolerance remain unknown. In the present study, we investigated expression of six aquaporins (Drip, Prip, Eglp1, Eglp2, Aqp12L, and Bib) in larvae of B. antarctica subjected to three different dehydration conditions: desiccation, cryoprotective dehydration, and osmotic dehydration. The expression of Drip and Prip was up-regulated under desiccation and cryoprotective dehydration, suggesting a role for these aquaporins in efficient water loss under these dehydration conditions. Conversely, expression of Drip and Prip was down-regulated under osmotic dehydration, suggesting that their expression is suppressed in larvae to combat dehydration. Larval water content was similarly decreased under all three dehydration conditions. Differences in responses of the aquaporins to the three forms of dehydration suggests distinct water management strategies associated with different forms of dehydration stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.