Abstract

The aim of this study was to investigate the pathological changes in a rat model of Alzheimer's disease (AD) and the effect of donepezil hydrochloride (HCl) treatment. The rat model of AD was established by the bilateral injection of amyloid β₁₋₄₀ (Aβ₁₋₄₀) into the hippocampus. Changes in spatial learning and memory functions were examined using the Morris water maze test and changes in catalase (CAT) and glutathione peroxidase (GSH-Px) activities were determined using chemical colorimetry. Moreover, the changes in acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) expression were analyzed using immunohistochemical staining. The mRNA expression levels of the amyloid precursor protein (APP) and β-secreted enzyme 1 (BACE1) were evaluated using RT-PCR. The effects of donepezil HCl on the aforementioned indices were also observed. The rat memories of the platform quadrants in the blank, sham and donepezil HCl groups were improved compared with those of the rats in the model group. The ratio of swim distance in the fourth platform quadrant (l₄) to the total swim distance (l total) for the model group rats (l₄/l total) was significantly decreased compared with that for the blank and sham group rats. Following donepezil HCl treatment, the ratio of l₄/l total significantly increased. AD modeling caused a significant decrease in the CAT and GSH-Px activities in the brain tissues of the rats. The CAT and GSH-Px activities in the AD model rats significantly increased following donepezil HCl treatment. Moreover, donepezil HCl treatment significantly decreased the AChE, APP and BACE1 mRNA expression levels and increased the ChAT expression levels. Therefore, donepezil HCl was able to significantly decrease learning and memory damage in a rat model of AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call