Abstract

The main strategy for resistance to the herbicide glyphosate in plants is the overexpression of an herbicide insensitive, bacterial 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). A glyphosate resistance strategy based on the ability to degrade the herbicide can be useful to reduce glyphosate phytotoxicity to the crops. Here we present the characterization of glyphosate resistance in transgenic alfalfa (Medicago sativa L.) expressing a plant-optimized variant of glycine oxidase (GO) from Bacillus subtilis, evolved in vitro by a protein engineering approach to efficiently degrade glyphosate. Two constructs were used, one with (GOTP+) and one without (GOTP−) the pea rbcS plastid transit peptide. Molecular and biochemical analyses confirmed the stable integration of the transgene and the correct localization of the plastid-imported GO protein. Transgenic alfalfa plants were tested for glyphosate resistance both in vitro and in vivo. Two GOTP+ lines showed moderate resistance to the herbicide in both conditions. Optimization of expression of this GO variant may allow to attain sufficient field resistance to glyphosate herbicides, thus providing a resistance strategy based on herbicide degradation

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call