Abstract

We have previously shown that in non-drug-selected human T lymphocytes, DNA repair is the primary determinant of cellular resistance to cisplatin (1). In this system, we have assessed mRNA levels of expression of the nucleotide excision repair (NER) genes ERCC1 and XPA, as well as the alternatively spliced species of ERCC1 which lacks exon VIII. The focus of these studies, was to try to identify the possible relative roles of normal XPA, full-length ERCC1, and alternatively spliced ERCC1, in a system where DNA repair is a clear determinant of cisplatin resistance. ERCC1 expression was directly related to cisplatin-DNA adduct repair capability, as well as directly related to cisplatin resistance, suggesting a primary role for ERCC1 in effecting DNA repair. XPA expression was approximately equivalent in each cell line, regardless of the level of DNA repair activity, suggesting a helper role for the product of this gene. The mRNA levels of the alternatively spliced species of ERCC1 were strongly inversely related to DNA repair activity, suggesting a possible inhibitory influence on the DNA repair process. This interpretation is consistent with alternative splicing of several known oncogenes, where the alternatively spliced species has an inhibitory effect on the full-length gene product. The NER pathway appears to be vitally important in effecting cisplatin resistance in non-drug-selected T lymphocytes. Further, it appears that NER may have at least one inhibitory regulatory component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call