Abstract

Replication of the Saccharomyces cerevisiae Ty1 retrotransposon requires a reverse transcriptase capable of synthesizing Ty1 DNA. The first description of an active form of a recombinant Ty1 enzyme with polymerase and RNase H activities is reported here. The Ty1 enzyme was expressed as a hexahistidine-tagged fusion protein in Escherichia coli to facilitate purification of the recombinant protein by metal-chelate chromatography. Catalytic activity of the recombinant protein was detected only when amino acid residues encoded by the integrase gene were added to the N-terminus of the reverse transcriptase-RNase H domain. This suggests that the integrase domain could play a role in proper folding of reverse transcriptase. Several biochemical properties of the Ty1 enzyme were analysed, including the effect of MgCl(2), NaCl, temperature and of the chain terminator dideoxy GTP on its polymerase activity. RNase H activity was examined by monitoring the cleavage of a RNA-DNA template-primer. Our results suggest that the distance between the RNase H and polymerase active sites corresponds to the length of a 14-nucleotide RNA-DNA heteroduplex. The recombinant protein produced in E. coli should be useful for further biochemical and structural analyses and for a better understanding of the role of integrase in the activation of reverse transcriptase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.