Abstract
Xenopus and Cynops oocytes were injected with exogenous mRNA prepared from rat small intestine and kidney and their electrical responses to amino acids were measured by both the current clamped and the voltage clamped methods. Oocytes injected with mRNA of rat small intestine showed a depolarization response to several neutral and basic amino acids, and almost no response to acidic amino acids. The responses to amino acids increased with incubation time after injection of mRNA, and followed Michaelis-Menten type kinetics. The responses were dependent on both Na + concentration and membrane potential, and were inactivated by a sulfhydryl reagent, 5,5-dithiobis(2-nitrobenzoate). These results are interpreted as due to the expression of Na +/amino acid cotransporter(s) in oocytes injected with rat small intestine mRNA. On the other hand, the oocyte injected with rat kidney mRNA showed a hyperpolarization response to neutral amino acids, a depolarization response to basic ones, and almost no response to acidic ones in frog Ringer solution. These responses were independent of Na + concentration and followed Michaelis-Menten type kinetics. These amino acid response characteristics in oocytes injected with rat kidney mRNA are interpreted as due to the expression of facilitated diffusion carrier protein(s) (uniporter) of amino acids in the oocyte.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.