Abstract

Introduction: Collagen peptide extracted from gouramy fish scale has noncytotoxic effects and good viability on osteoblast cells. Various characteristic tests also show that it could form as scaffold with the potential to be a biomaterial graft used in tissue engineering. Studies in this field are vital considering the fact that graft is highly essential for the development and success of regeneration therapy. The aim of the study was to examine the expression of alkaline phosphatase (ALP) and transforming growth factor-β (TGF-β) in osteoblast cell cultures after administering collagen peptide derived from gouramy fish scale. Material and Methods: Osteoblast cells were put into 60 well plates divided into two groups. The first group was to analyze the expression of ALP, while the second group was for TGF-β. Then, each of the group was divided into five other groups consisting of cell control and culture of osteoblast cell having collagen peptide derived from gouramy fish scale with four different concentrations. The collagen peptide was extracted through enzymatic method. Then, the immunocytochemistry assay was used to detect the expression of ALP and TGF-β in the osteoblast cell cultures derived from calvaria mice after administering collagen peptide from the fish scale. The statistical methods used include Multivariate Analysisof Variance (MANOVA) analysis with a significance value of 0.000 (P < 0.05) and Tukey Honest Significance Test (HSD). Results: The statistical results showed that the collagen peptide derived from gouramy fish scales with various concentrations produced significantly different expressions of ALP and TGF-β. Conclusion: The expression of ALP and TGF-β in osteoblast cell cultures increased after administering the collagen peptide derived from the gouramy fish scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.