Abstract

Experimental infection of Lewis rats with Borna disease virus (BDV) causes an immune-mediated nonpurulent meningoencephalitis. Viral persistence in the central nervous system is accompanied by mononuclear infiltrates, activated monocytic/microglial cells and reactive astrocytes. The immune-mediated process was further characterized by expression analysis of allograft inflammatory factor-1 (AIF-1), a novel marker of monocyte/microglial activation and of glial fibrillary acid protein (GFAP) between day 3 and day 50 post infection (p.i.). Potential neuroprotective effects of these cells were studied by the induction of haeme oxygenase-1 (HO-1), a defensive molecule against oxidative stress in various brain insults. In BDV-infected rat brains, mononuclear infiltrates and AIF-1 expression increased up to day 28 p.i. During early time points p.i., AIF-1 expression was mainly found in inflammatory lesions and adjacent brain parenchyma. Already 24 days p.i., a widespread upregulation of AIF-1 was observed which declined only moderately beyond day 28 p.i. HO-1 induction was maximal between days 18 and 28 p.i. Increased amounts of GFAP-positive astrocytes were present beyond 24 days p.i. Viral antigen expression increased simultaneously to the inflammatory reaction and persisted up to 50 days p.i. Widespread upregulation of AIF-1 indicates an early, long-lasting microglial activation, which might be involved in the immunesurveillance of the immune-mediated inflammatory events. The early peak of HO-1 most likely represents a neuroprotective, anti-inflammatory response by invading monocytes, microglial cells and astrocytes during the formation of encephalitic lesions and acute viral replication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call