Abstract

Little is known about the mechanisms that regulate the expression of adenosine receptors during CNS development. We demonstrate here that retinas from chick embryos injected in ovo with selective adenosine receptor ligands show changes in A1 receptor expression after 48 h. Exposure to A1 agonist N⁶-cyclohexyladenosine (CHA) or antagonist 8-Cyclopentyl-1, 3-dipropylxanthine (DPCPX) reduced or increased, respectively, A1 receptor protein and [³H]DPCPX binding, but together, CHA+DPCPX had no effect. Interestingly, treatment with A(2A) agonist 3-[4-[2-[[6-amino-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino] ethyl]phenyl] propanoic acid (CGS21680) increased A1 receptor protein and [³H]DPCPX binding, and reduced A(2A) receptors. The A(2A) antagonists 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-trizolo[1,5-c] pyrimidine (SCH58261) and 4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazo-5-yl-amino]ethyl)phenol (ZM241385) had opposite effects on A1 receptor expression. Exposure to CGS21680 + CHA did not change A1 receptor levels, whereas CHA + ZM241385 or CGS21680 + DPCPX had no synergic effect. The blockade of adenosine transporter with S-(4-nitrobenzyl)-6-thioinosine (NBMPR) also reduced [³H]DPCPX binding, an effect blocked by DPCPX, but not enhanced by ZM241385. [³H]DPCPX binding kinetics showed that treatment with CHA reduced and CGS21680 increased the Bmax, but did not affect Kd values. CHA, DPCPX, CGS21680, and ZM241385 had no effect on A1 receptor mRNA. These data demonstrated an in vivo regulation of A1 receptor expression by endogenous adenosine or long-term treatment with A1 and A(2A) receptors modulators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call