Abstract

Mild or subclinical respiratory infections caused by Bordetella bronchiseptica are widespread in pigs despite multiple control efforts. Infection with virulent B. bronchiseptica strains is a common risk factor in the establishment of toxin-producing strains of Pasteurella multocida in the nasal cavity of pigs leading to the disease, atrophic rhinitis (AR). This study was designed to explore the possibility of expressing a protective epitope of P. multocida toxin (PMT) in B. bronchiseptica to create single-component mucosal vaccine to control atrophic rhinitis in pigs. To achieve this, a P. multocida toxin fragment (PMTCE), that was non-toxic and protective against lethal challenge in mice, was cloned into a broad-host-range plasmid, PBBR1MCS2, and introduced into B. bronchiseptica by electroporation. The Pasteurella gene construct was placed under the regulatory control of a promoter region that was separately isolated from B. bronchiseptica and appears to be part of the heat shock protein gene family. B. bronchiseptica harboring the plasmid under antibiotic selection expressed the 80 kDa PMTCE as determined by PAGE and Western blot with a PMT-specific monoclonal antibody. When introduced into the respiratory tracts of mice, B. bronchiseptica harboring the plasmid construct was reisolated in declining numbers for 72 h post-inoculation. Antibody responses (IgM, IgA and IgG) to B. bronchiseptica were detected in serum and respiratory lavage, but PMTCE-specific antibodies were not detected. While further refinements of PMT expression in B. bronchiseptica are necessary, this study provides a basis for the development of a single-component, live-attenuated vaccine against atrophic rhinitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.