Abstract

Post-translation modification of proteins plays a critical role in cellular signaling processes. In recent years, the SUMO (Small Ubiquitin-Like Modifier) class of molecules has emerged as an influential mechanism for target protein management. SUMO proteases play a vital role in regulating pathway flux and are therefore ideal targets for manipulating stress-responses. In the present study, the expression of an Arabidopsis thaliana cysteine protease (OVERLY TOLERANT TO SALT-1, OTS1) in wheat (Triticum aestivum L.) has led to improved plant growth under water stress conditions. Transformed wheat (pUBI-OTS1) displayed enhanced growth and delayed senescence under water deficit when compared with untransformed Gamtoos-R genotype or plants carrying an empty vector. Transformed pUBI-OTS1 plants also maintained a high relative moisture content (RMC), had a higher photosynthesis rate, and also had a higher total chlorophyll content when compared to untransformed plants or plants carrying an empty vector. SUMOylation of total protein also increased in untransformed plants but not in the AtOTS1 transformed plants. Our results suggest that SUMO-proteases may influence an array of mechanisms in wheat to the advantage of the crop to be more tolerant to water stress caused by drought. This is the first report to elucidate SUMOylation effects in the hexaploid crop wheat (T. aestivum L.).

Highlights

  • Water stress, due to periods of drought, is one of the most important abiotic stressors hampering productivity in agriculture crops

  • To assess the responses of either untransformed plants or transformed plants containing an empty-pUBI, or transformed plants containing AtOTS1, the plants were grown in the greenhouse and phenotypically assessed at day 53 before exposure to water stress

  • Overexpression of AtOTS1 further provided better tolerance to drought by delaying the onset of wilting observed in the untransformed plants

Read more

Summary

Introduction

Due to periods of drought, is one of the most important abiotic stressors hampering productivity in agriculture crops. It occurs episodically in many regions is and, in some instances, it will be continuous with no indication of ending. Bread wheat (Triticum aestivum L.) is a high commodity crop cultivated in many countries accross a wide range of agroecological conditions and lack of water due to drought severely affects wheat productivity. Plants tolerate such water stress due to an array of biochemical reactions leading to phenotypic plasticity. Wheat will shorten its lifespan to reproduce prior to water resources becoming totally depleted, a phenomenon known as drought escape or the ephemeral strategy

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.