Abstract

Protease biocatalysis in a high-salt environment is very attractive for applications in the detergent industry, the production of diagnostic kits, and traditional food fermentation. However, high-salt conditions can reduce protease activity or even inactivate enzymes. Herein, in order to explore new protease sources, we expressed a salt-tolerant pseudolysin of Pseudomonas aeruginosa SWJSS3 isolated from deep-sea mud in Saccharomyces cerevisiae. After optimizing the concentration of ion cofactors in yeast peptone dextrose (YPD) medium, the proteolytic activity in the supernatant was 2.41 times more than that in the control group when supplemented with 5 mM CaCl2 and 0.4 mM ZnCl2. The extracellular proteolytic activity of pseudolysin reached 258.95 U/mL with optimized expression cassettes. In addition, the S. cerevisiae expression system increased the salt tolerance of pseudolysin to sodium chloride (NaCl)and sodium dodecyl sulfate (SDS) and the recombinant pseudolysin retained 15.19% activity when stored in 3 M NaCl for 7 days. The recombinant pseudolysin was able to efficiently degrade the β-conglycinin from low-denatured soy protein isolates and glycinin from high-denatured soy protein isolates under high temperatures (60 °C) and high-salt (3 M NaCl) conditions. Our study provides a salt-tolerant recombinant protease with promising applications in protein hydrolysis under high-salt conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.