Abstract

The bacteriophage CAP 10-3 forming plaques against Cutibacterium acnes which causes skin acne was previously isolated from human skin acne lesion. Incomplete whole genome sequence (WGS) of the bacteriophage CAP 10-3 was obtained and it had 29,643 bp long nucleotide with 53.86% GC content. The sequence was similar to C. acnes phage PAP 1-1 with a nucleotide sequence identity of 89.63% and the bacteriophage belonged to Pahexavirus. Bioinformatic analysis of the WGS predicted 147 ORFs and functions of 40 CDSs were identified. The predicted endolysin gene of bacteriophage CAP 10-3 was 858 bp long which was deduced as 285 amino acids (~ 31 kDa). The protein had the highest similarity with amino acid sequence of the endolysin from Propionibacterium phage PHL071N05 with 97.20% identity. The CAP 10-3 endolysin gene was amplified by PCR with primer pairs based on the gene sequence, cloned into an expression vector pET-15b and transformed into Escherichia coli BL21(DE3) strain. The predicted protein band (~ 33 kDa) for the recombinant endolysin was detected in an SDS-PAGE gel and western blot assay. The concentrated supernatant of cell lysate from E. coli BL21(DE3) (pET-15b_CAP10-3 end) and a partially purified recombinant CAP 10-3 endolysin showed antibacterial activity against C. acnes KCTC 3314 in a dose-dependent manner. In conclusion, the recombinant CAP 10-3 endolysin was successfully produced in E. coli strain and it can be considered as a therapeutic agent candidate for treatment of human skin acne.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call