Abstract

Streptococcus thermophilus is widely used in food fermentations; it commonly suffers diverse stress challenges during manufacturing. This study investigated the cold shock response of S. thermophilus when the cell culture temperature shifted from 42 degrees C to 15 degrees C or 20 degrees C. The growth of cells was affected more drastically after cold shock at 15 degrees C than at 20 degrees C. The generation time was increased by a factor of 19 when the temperature was lowered from 42 degrees to 20 degrees C, and by a factor of 72 after a cold shock at 15 degrees C. The two-dimensional electrophoretic protein patterns of S. thermophilus under cold shock conditions were compared with the reference protein pattern when cells were grown at optimal temperature. Two proteins of 21.5 and 7.5 kDa synthesized in response to cold shock were characterized. N-terminal sequencing and sequence homology searches have shown that the 7.5-kDa protein belonged to the family of the major cold shock proteins, while no homology was found for the new cold shock protein of 21.5 kDa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.