Abstract

The 85-kDa cytoplasmic phospholipase A2 (cPLA2) is the major hormone and growth factor-regulated enzyme that catalyzes release of arachidonic acid in mammalian cells. Activation of cPLA2 requires elevation of intracellular Ca2+ and the phosphorylation of the cPLA2 enzyme by mitogen-activated protein (MAP) kinase. Down-regulation of protein kinase C by phorbol esters or pertussis toxin catalyzed ADP-ribosylation of Gi proteins inhibits thrombin and ATP receptor-stimulated MAP kinase and arachidonic acid release, indicating that functional protein kinase C and Gi proteins are required for G protein regulation of arachidonic acid release. A mutant G alpha i2 subunit having Gly203 mutated to Thr (alpha i2G203T) inhibited thrombin and ATP receptor stimulation of arachidonic acid release independent of adenylyl cyclase inhibition, Ca2+ mobilization, and MAP kinase activation. Overexpression of the wild-type alpha i2 polypeptide or the inactive mutant alpha i2G204A (Gly204 mutated to Ala) polypeptide had no effect on thrombin or ATP receptor stimulation of arachidonic acid release. The phenotype observed with expression of the mutant alpha i2G203T polypeptide defines a role for Gi2 in the control of cPLA2 activity and subsequent arachidonic acid release in addition to the regulation of intracellular Ca2+ levels and MAP kinase activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.