Abstract

A potential novel fumarate reductase gene designated frd1A was isolated by screening a marine metagenomic library through a sequence-based strategy. Sequence analyses indicated that Frd1A and other putative fumarate reductases were closely related. The putative fumarate reductase gene was subcloned into a pETBlue-2 vector and expressed in Escherichia coli Tuner(DE3)pLacІ cells. The recombinant protein was purified to homogeneity. Functional characterization by high-performance liquid chromatography demonstrated that the recombinant Frd1A protein could catalyze the hydrogenation of fumarate to succinate acid. The Frd1A protein displayed an optimal activity at pH 7.0 and 28°C, which could be stimulated by adding metal ions such as Zn(2+) and Mg(2+). The Frd1A enzyme showed a comparable affinity and catalytic efficiency under optimal reaction conditions: k m =0.227mmol/L, v max= 29.9U/mg, and k cat/k m=5.44 × 10(4) per mol/s. The identification of Frd1A protein underscores the potential of marine metagenome screening for novel biomolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.