Abstract

MSI-99 is a synthetic analog of magainin II (MII), a small cationic peptide highly inhibitory to a wide spectrum of microbial organisms. Tomato plants were transformed to express a gene encoding the MSI-99 peptide and tested for possible enhancement of resistance to important pathogens of this crop. Thirty-six tomato transformants carrying an MSI-99 expression vector designed to target the peptide into extracellular spaces were obtained by Agrobacterium tumefaciens-mediated transformation. Expression of MSI-99 caused no obvious cytotoxic effects in these plants. In the tests with Pseudomonas syringae pv. tomato (bacterial speck pathogen) at 10(5 )CFU/ml, several MSI-99-expressing lines developed significantly fewer disease symptoms than controls. However, MSI-99-expressing lines were not significantly different from controls in their responses to the fungal pathogen Alternaria solani (early blight) and the oomycete pathogen Phytophthora infestans (late blight). These findings are in accordance with our previous in vitro inhibition tests, which showed that the MSI-99 peptide is more inhibitory against bacteria than against fungi and oomycetes. Additional in vitro inhibition assays showed that MSI-99 loses its antimicrobial activity in the total or extracellular fluids from leaflets of non-transformed tomato plants; however, P. syringae pv. tomato could not multiply in the extracellular fluid from an MSI-99-expressing line. Our results suggest that expression strategies providing continuous high expression of MSI-99 will be necessary to achieve significant enhancement of plant disease resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.