Abstract

Basic fibroblast growth factor (FGF-2) is an important member of the FGF gene family. It is widely used in clinical applications for scald and wound healing in order to stimulate cell proliferation. Further it is applied for inhibiting stem cell differentiation in cultures. Due to a shortage of plasma and low expression levels of recombinant rbFGF in conventional gene expression systems, we explored the production of recombinant rbFGF in rice grains (Oryza sativa bFGF, OsrbFGF). An expression level of up to 185.66 mg/kg in brown rice was obtained. A simple purification protocol was established with final recovery of 4.49% and resulting in a yield of OsrbFGF reaching up to 8.33 mg/kg OsrbFGF. The functional assay of OsrbFGF indicated that the stimulating cell proliferation activity on NIH/3T3 was the same as with commercialized rbFGF. Wound healing in vivo of OsrbFGF is equivalent to commercialized rbFGF. Our results indicate that rice endosperm is capable of expressing small molecular mass proteins, such as bFGF. This again demonstrates that rice endosperm is a promising system to express various biopharmaceutical proteins.

Highlights

  • Fibroblast growth factors (FGFs) are a family of proteins that is structurally related to heparin-binding polypeptides with similar biological activities

  • A human mature basic fibroblast growth factor gene was optimized with a rice codon bias

  • Our study demonstrated that rice endosperm cells as bioreactors successfully expressed functional OsrbFGF and that the expression levels of total OsrbFGF reached up to 185.66 mg/kg in brown rice, of which 17.74 mg/kg was soluble OsrbFGF accounting for 9.55% of total OsrbFGF

Read more

Summary

Introduction

Fibroblast growth factors (FGFs) are a family of proteins that is structurally related to heparin-binding polypeptides with similar biological activities. It is a single-strand protein with a molecular weight of ~17 kDa and a pI of 9.6. It can stimulate the proliferation of NIH/3T3 cells and inhibit the differentiation of stem cells, and may play an important role in curing asthma because of its capacity for proliferation, migration and changing the contractile phenotypes of human airway smooth muscle cells in vitro [4]. BFGF has been found to stimulate the growth of mouse mammary epithelial cells [5]. In clinical applications it is widely used for acceleration of scald and wounding healing. Treatment of wounds showing redness, skin elevation and scald sealing with bFGF is superior to wounds caused by surgery, and there is less skin hardness [6]

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.