Abstract

Ligation of the externally expressed Fas (APO 1/CD95) molecule will initiate programmed cell death (apoptosis), in many mammalian developing and adult cells. Fas-induced apoptosis has not been demonstrated with the cells of any non-mammalian vertebrate. We immunostained suspensions of splenocytes from adult Xenopus laevis, the South African clawed toad, with a polyclonal rabbit anti-human Fas antibody raised against the amino acid residues 321–335 of human Fas. The binding was specific, as it was dramatically reduced by preincubation of the antibody with the Fas peptide used to make it, but not with a Fas-ligand (FasL) peptide. The binding was enhanced after in vitro exposure of the splenocytes to phytahemagglutinin (PHA), a T cell mitogen and apoptogen in this species. Sections of developing Xenopus larval tissue were also immunostained with the polyclonal rabbit anti-human Fas antibody. Consistant binding of thymocytes and splenocytes was not observed until early metamorphosis in these immunological sites. A monoclonal mouse anti-human Fas antibody, previously used to stimulate apoptosis in mammalian cells, induced significant levels of apoptosis in adult Xenopus splenocytes and additionally, bound specifically to a splenocyte extract, as assayed by ELISA. Thus, a molecule on Xenopus splenocytes shares both structural and functional homologies with human Fas, indicating the evolutionary conservation within vertebrates of this means of initiating apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.