Abstract

Root-knot nematodes (RKN) cause substantial yield decline in eggplant and sustainable management options to minimize crop damage due to nematodes are still limited. A number of genetic engineering strategies have been developed to disrupt the successful plant–nematode interactions. Among them, delivery of proteinase inhibitors from the plant to perturb nematode development and reproduction is arguably the most effective strategy. In the present study, transgenic eggplant expressing a modified rice cystatin (OC-IΔD86) gene under the control of the root-specific promoter, TUB-1, was generated to evaluate the genetically modified nematode resistance. Five putative transformants were selected through PCR and genomic Southern blot analysis. Expression of the cystatin transgene was confirmed in all the events using western blotting, ELISA and qPCR assay. Upon challenge inoculation, all the transgenic events exhibited a detrimental effect on RKN development and reproduction. The best transgenic line (a single copy event) showed 78.3% inhibition in reproductive success of RKN. Our results suggest that cystatins can play an important role for improving nematode resistance in eggplant and their deployment in gene pyramiding strategies with other proteinase inhibitors could ultimately enhance crop yield.

Highlights

  • Eggplant (Solanum melongena L.), popularly known as brinjal or aubergine, is consumed as a staple food in Asia and the Mediterranean region with China and India contributing the maximum share of global production

  • Given the ultimate importance of multiplication factor (MF) which is indicative of reproductive fitness and parasitic success of a nematode on host plants, our results demonstrated that MF was dramatically reduced by 67.81–78.30% in transgenic lines compared to WT plants

  • Our data demonstrate that cystatin overexpression in eggplant confers substantial resistance to M. incognita by inducing deleterious effects on nematode development and reproduction

Read more

Summary

Introduction

Eggplant (Solanum melongena L.), popularly known as brinjal or aubergine, is consumed as a staple food in Asia and the Mediterranean region with China and India contributing the maximum share of global production (source). Due to its high nutritive value this solanaceous vegetable is often recommended to tackle malnutrition problems. Eggplant farmers suffer substantial yield losses due to the attack of various pests and diseases including nematodes. Root-knot nematode (RKN: Meloidogyne incognita) is considered the major yield constraint for eggplant (Di Vito et al, 1986; Koenning et al, 1999; Goggin et al, 2006; Bagnaresi et al, 2013). In India, according to a conservative estimate, RKN causes 16.67% yield decline in brinjal which translates into almost 23$ million annual monetary loss (Jain et al, 2007).

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.