Abstract

In patients with prostate cancer (PCa), there is a high rate of overdiagnosis and frequent overtreatment. Therefore, there is an urgent need for more accurate prediction of biochemical recurrence (BCR). DNA methylation regulation patterns play crucial roles in tumorigenicity, progression, and treatment efficacy in PCa. However, the global relationship between epigenetic alterations, changes in mRNA levels, and pathologic phenotypes of PCa remain largely undefined. Here, we conducted a systematic analysis to identify global coexpression and comethylation modules in PCa. We identified coregulated methylation and expression modules and the relationships between epigenetic modifications, tumor progression, and the corresponding immune microenvironment in PCa. Our results show that DNA methyltransferases (DNMTs) are strongly associated with pathologic phenotypes and immune infiltration patterns in PCa. We built a two‐factor predictive model using the expression features of DNMT3B and DNMT1. The model was used to predict the BCR status of patients with PCa and achieved area under the receiver operating characteristic curve values of 0.70 and 0.88 in the training and independent testing datasets, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.