Abstract

Acute myocardium infarction (AMI) is one of the main causes of cardiovascular death, and timely intervention and diagnosis are essential. Owing to the irreversible apoptosis and death of myocardial cells, which ultimately causes heart failure, the problem of myocardial repair after myocardial infarction needs to be urgently addressed. Exosomes can act as messengers between cells, delivering large amounts of proteins, RNA, and lipids to receptor cells, and regulating target cell functions. Studies have shown that exosomes can repair infarcted myocardium. We aimed to investigate the relationship between long non-coding RNA NEAT1 in serum exosomes of patients and AMI and its underlying mechanism. Subjects were divided into control, UA, and STEMI groups. RNA was extracted from the serum exosomes, and the expressions of lncRNA NEAT1 and miR-204 were detected by qRT-PCR. MMP-9 was detected by western blot, Spearman test was used to analyze the correlation among the three. Logistic regression and Receiver-operating characteristic curve (ROC) were used to evaluate the prediction of acute myocardial infarction. The expressions of NEAT1 and MMP-9 in serum exosomes of patients with acute ST-segment elevation myocardial infarction were up-regulated and positively correlated, miR-204 expression was down-regulated, there were no correlations between miR-204 with NEAT1, or MMP-9. Exosomal NEAT1, miR-204, and MMP-9 displayed potent biomarkers for diagnosis of acute ST-segment elevation myocardial infarction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call