Abstract

Formation of cheese aroma compounds by Lactococcus lactis from amino acid catabolism depends on a complex network of reactions, which involve enzymes such as aminotransferases, dehydrogenases, lyases, and decarboxylases, among others. Based on the ability of some L. lactis strains to grow with low requirements of amino acids, we have studied in L. lactis IFPL730 the effect of the branched chain amino acid (BCAA) content on the expression of functional genes related to amino acid catabolism and aroma compound formation (araT, bcaT, kivD, ytjE and panE). L. lactis IFPL730 growth rate decreased under leucine, valine or isoleucine starvation but the strain reached similar viable counts at the stationary phase in all culture conditions studied. The level of expression of some genes encoding enzymes involved in amino acid catabolism changed significantly (P<0.05) when those conditions were compared. Specially, α-ketoisovalerate decarboxylase (kivD), BCAA-specific aminotransferase (bcaT) and C-S lyase (yjtE) gene expressions increased markedly by both isoleucine and valine starvation. In addition to gene expression, formation of volatile compounds was determined in all growth conditions. The results showed that BCAA starvation conditions caused a significant increase (P<0.05) in the formation of metabolic end products related to cheese aroma, such as 3-methylbutanal and 3-methylbutanol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.