Abstract

Four bacterial phenolic acid decarboxylases (PAD) from Lactobacillus plantarum, Pediococcus pentosaceus, Bacillus subtilis, and Bacillus pumilus were expressed in Escherichia coli, and their activities on p-coumaric, ferulic, and caffeic acids were compared. Although these four enzymes displayed 61% amino acid sequence identity, they exhibit different activities for ferulic and caffeic acid metabolism. To elucidate the domain(s) that determines these differences, chimeric PAD proteins were constructed and expressed in E. coli by exchanging their individual carboxy-terminal portions. Analysis of the chimeric enzyme activities suggests that the C-terminal region may be involved in determining PAD substrate specificity and catalytic capacity. In order to test phenolic acid toxicity, the levels of growth of recombinant E. coli displaying and not displaying PAD activity were compared on medium supplemented with different concentrations of phenolic acids and with differing pHs. Though these acids already have a slight inhibitory effect on E. coli, vinyl phenol derivatives, created during decarboxylation of phenolic acids, were much more inhibitory to the E. coli control strain. To take advantage of this property, a solid medium with the appropriate pH and phenolic acid concentration was developed; in this medium the recombinant E. coli strains expressing PAD activity form colonies approximately five times smaller than those formed by strains devoid of PAD activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.